الهيئة الاكاديمية والموظفين

Prediction of Gas/Particle partitioning coefficients of semi volatile organic for Dr. Omar Deeb

عدد المشاهدات: 224

alt
 

Field of Research:  Pharmacology

Name of author and co-authors on the published work;  Deeb Omar, Khadikar Padmakar and Goodarzi Mohammad

Title of published work: Prediction of Gas/Particle Partitioning Coefficients of Semi Volatile Organic

Compounds via QSPR Methods: PC-ANN and PLS Analysis

 

Name of Journal or Book : Journal of the Iranian Chemical Society

Year: 2011

Journal volume:        8(1), 176-192.

Publisher’s name and address : Iranian Chemical Society, Springer (January 2012)

Abstract of Published work:

Linear and non-linear quantitative structure property relationship (QSPR) models for predicting the gas/particle partitioning coefficients of semivolatile organic compounds were developed based on partial least squares (PLS) and artificial neural network (ANN) to identify a set of structurally based numerical descriptors. Multilinear regression (MLR) was used to build the linear QSPR models using combination of the compounds structural descriptors and topological indices related to environmental conditions such as temperature, pressure and particle size. The prediction results for PLS and ANN models give very good coefficient of determination (0.97). In consistent with experimental studies, it was shown that linear and non-linear regression analyses are useful tools to predict the relationship between the calculated descriptors and gas/particle partitioning coefficient.

 

شارك المقال عبر:

نقابة أساتذة وموظفي جامعة القدس… توصلنا لتفاهمات مع الإدارة ونسعى لإعداد اتفاقية
اصدار الجزء السادس عشر من – يسألونك – أ.د. حسام عفانة

آخر الأخبار

ربما يعجبك أيضا

Al-Quds University